1. Basics Information about the Project

Aircraft navigation has a range of methods - to the completely visual, to complicated flight management systems. This unit will focus on the two basic methods of navigation used by VFR (Visual Flight Rules) pilots - Pilotage and Dead Reckoning.

| Project Title | Pilotage and Dead Reckoning Navigation |
| :--- | :--- |
| Employer Site | Alpha One Flight Services |
| Submitted By (teacher's <br> name) | Eric Brunelle |
| School | Brockton High School |
| Brief Description and <br> Rationale. | This Unit will be used in our new Aviation program beginning <br> this year. This area is lacking in the curriculum package we <br> will be using and includes many STEM connections. |
| Grade Level | Grades 9 - 12 |
| Materials/Resources | Plotters, WAC, TAC and Sectional Aeronautical Charts |
| Duration of lesson | 5 lessons at 55 minutes each |
| Key Vocabulary/Word wall | Pilotage, Dead Reckoning, Course, True North, Magnetic <br> North, magnetic variation, landmarks, charts |
| Pre-requisite knowledge | $8^{\text {th }}$ grade math skills, use of a ruler |
| Strategies to promote equity | All students will be provided with the necessary tools - no <br> additional technology. |
| Instructional Objectives | - Students will be able to understand the navigation markings <br> and symbols on a Sectional Chart |
| $\bullet$ | Students will understand flight planning techniques using a <br> Sectional Chart <br> - Students will understand the terms Pilotage and Dead <br> Reckoning |

(Note: Please attach relevant documents.)

What subject area(s) does this project focus on (check all that apply)?

- ELA
- Mathematics
- Science Technology/Engineering
- Arts
- Technology
- Vocational/Technical (CTE)
- Career Development

When will this project/lesson take place (school year, summer program, after-school program)? This Unit will take place during the 2020-21 school year

## 2 Instructional Techniques

Use this section of the template to describe instructional strategies, drawing from the recommended strategies shown below or other strategies for unit plan or for each lesson plan.

| Reading Strategies | Students will explore the VFR Sectional and TAC Chart <br> legends to develop understanding of the various symbols <br> on these charts. |
| :--- | :--- |
| Multimedia/Visual Strategy <br> (e.g. slides) | The Unit will use PowerPoint presentations, paper charts <br> plotters and pencils |
| Graphic organizers or <br> handouts | Lesson 1 <br> $\bullet \quad$ Digital TAC, WAC and Sectional Charts, Chart |

Lesson 2

- Google Earth Pro, Longitude and Latitude handout Lesson 3
- Magnetic compasses, New York Sectional Charts, \#2 pencils, straight edge
Lesson 4
- Aviation Plotters, pencils and New York Sectional Charts
Lesson 5
- Flight Plan log, Flight Plan Instructions, Aviation Plotters and Sectional Charts

| Writing Strategies | Students will reflect on the days or previous days activities in <br> their journals. |
| :--- | :--- |
| Speaking and Listening <br> Strategies | There will be additional lessons in this unit, where presentations <br> to the class will be the culminating activity. |
| Family: Any opportunities <br> to involve parent/guardians <br> and other family members <br> in this project? | At some point during the school year, we will plan a field trip to <br> the airport. There will be opportunities for parents to meet their <br> children at the airport and experience a discounted "Discovery <br> Flight". There will also be a "Young Eagles" day at Plymouth <br> Airport where children ages 10-17 can get a free discovery <br> flight with a volunteer pilot. I have participated in both of these <br> activities in the past. |
| Virtual/Remote Teaching <br> Strategy | This lesson can be done remotely; however it will be missing <br> the individual help and group support. This can be overcome to <br> some extent through the use of online video tutorials, of which <br> there are many. |

## 3 Learning Standards

| Framework | VTE Frameworks <br> 4. A. 01 Develop a career plan and portfolio <br> 4. B. 01 Demonstrate appropriate oral and written communication skills in the workplace. <br> 4. B. 02 Demonstrate active listening skills. <br> 4. C. 03 Accepts direction and constructive criticism. <br> 4. C. 06 Interact appropriately with coworkers. <br> Common Core <br> RST.9-10.1 - Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. <br> RST.9-10.2 - Determine the central ideas or conclusions of a text; trace the text's explanation or depiction of a complex process, phenomenon, or concept; provide an accurate summary of the text. <br> NGSS Standards <br> HS-ETS1-1 - Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants. <br> Science and Engineering Practices <br> Asking Questions and Defining Problems <br> Constructing Explanations and Designing Solutions <br> Disciplinary Core Ideas <br> ETS1.A: Defining and Delimiting Engineering Problems <br> Crosscutting Concepts <br> Systems and System Models <br> Influence of Science, Engineering, and Technology on Society and the Natural World <br> HS-ETS1-3 - Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts. <br> Science and Engineering Practices <br> Constructing Explanations and Designing Solutions <br> Disciplinary Core Ideas <br> ETS1.B: Developing Possible Solutions <br> Crosscutting Concepts <br> Influence of Science, Engineering, and Technology on Society and the Natural World |
| :---: | :---: |
| Domain or Strand | 2016 Massachusetts Science and Technology/Engineering Curriculum Framework |
| Grade Level | Grades 9-12 |

## 4 Detailed Outline (Optional)

| Lesson/Step Unit | Description | Details: Materials/Resources, Modifications, <br> Extensions |
| :--- | :--- | :--- |
| Lesson 1 | Aviation Charts | PowerPoint Presentation - Digital TAC Charts, <br> Chart handouts, pencils |
| Lesson 2 | Longitude and Latitude | Google Earth Pro, Longitude and Latitude <br> handout |
| Lesson 3 | The Magnetic Compass | Magnetic compasses, New York Sectional <br> Chart, \#2 pencils, straight edge, magnets, <br> handout |
| Lesson 4 | Initial Flight Planning | You Tube links: <br> https://www.youtube.com/watch?v=pRJaU0y5RHY |
| https://www.youtube.com/watch?v=9eJUioUWkPc |  |  |\(\left|\begin{array}{l}Attached Powerpoint, plotters, pencils and <br>


Sectional Charts\end{array}\right|\)| Lesson 5 |
| :--- |


| $\mathbf{5}$ Activity Sheets |  |
| :--- | :--- |
| 5 - WAC Chart | Lesson 1 World Aeronautical Chart |
| 6 - Sectional Chart | New York Sectional Chart |
| 7 - TAC Chart | Boston Terminal Area Chart |
| 8 - Questions/Definitions | Questions and definitions on the three chart types |
| $9-12$ - Aviation Longitude <br> and Latitude | Google Earth activity on determining Longitude and Latritude |
| 13 - Magnetic Compass | Outdoor activity determining magnetic north |
| 14 - Plotter | Image of an Aviation Plotter |
| 15 - Using the Plotter | Practical directions on using the plotter for three courses |
| $16,17-$ Charting your <br> Course | Directions on charting a course of your own choosing |
| $18-$ VFR Flight Plan | Simplified version of a VFR Flight Plan |

Eric Brunelle
World Aeronautical Chart (WAC)


Eric Brunelle
New York Sectional Chart


Eric Brunelle
Boston Terminal Area Chart (TAC)



Aviation Charts

1. Define "Pilotage"
2. Define "Dead Reckoning"
3. What is a WAC chart and why would we use one?
4. What is a TAC chart and why would we use one?
5. How are "Populated Areas" depicted on the TAC?
6. How are Controlled Airports depicted on the TAC? Uncontrolled Airports?
7. What is the difference between Controlled and Uncontrolled airports?
8. Why is it important that a pilot know the "Quadrant Elevations"?

## Aviation Longitude and Latitude

|  | View Iools Add Help |  |
| :---: | :---: | :---: |
|  | $\checkmark$ Toolbar | Ctrr + Alt + T |
|  | $\checkmark$ Sidebar | $\mathrm{Ctrl}+\mathrm{Alt}+\mathrm{B}$ |
| Open Google Earth Pro > View> Grid | Full Screen | F11 |
|  | View Size |  |
|  | Show Navigation |  |
|  | V Status Bar |  |
|  | $\checkmark$ Grid | Ctil + L |

What is the Longitude of the Prime Meridian? $\qquad$
What is the Longitude of the Antemeridian?
What is the Latitude of the North Pole? $\qquad$
What is the Latitude of the South Pole? $\qquad$
Find an airport with two intersecting runways. List the four Longitude/Latitude points that define the "Numbers" of the runway. Use Degrees (\%), Minutes (') and Seconds (") - with Decimal.

Airport $\qquad$
Example - RWY 15 Latitude $41^{\circ} 40^{\prime} 48.75^{\prime \prime} \mathrm{N}$ Longitude $70^{\circ} 57^{\prime} 50.54^{\prime \prime} \mathrm{W}$ RWY
$\qquad$ Latitude Longitude $\qquad$
$\qquad$ Latitude
Longitude $\qquad$
$\qquad$ Latitude $\qquad$ Longitude $\qquad$
$\qquad$ Latitude
Longitude $\qquad$

Eric Brunelle Unit Plan - Pilotage and Dead Reckoning
Sketch the runway layout based on True North

Eric Brunelle Unit Plan - Pilotage and Dead Reckoning
Questions - Answer each question in a complete sentence.

1. Explain what is meant by this position report: "Aircraft is approximately located at $41^{\circ} 42^{\prime}$ North Latitude, $71^{\circ} 3^{\prime}$ West Longitude."
2. What is the meaning of a runway number? What is the accuracy of the runway number?

Second Airport

Example - RWY 15 Latitude $41^{\circ} 40^{\prime} 48.75^{\prime \prime} \mathrm{N}$ Longitude $70^{\circ} 57^{\prime} 50.54^{\prime \prime} \mathrm{W}$ RWY
$\qquad$ Latitude $\qquad$ Longitude $\qquad$

How many "Nautical Miles" are there between your two airports?

What would your "Heading" be?

Topic to investigate: Would your heading be a "True" heading or a "Magnetic" Heading?
$\begin{array}{lr}\text { Eric Brunelle } & \text { Unit Plan - Pilotage and Dead Reckoning } \\ \text { Magnetic Compass - Questions and Answers }\end{array}$

1. What are the four "Cardinal Headings?
2. What is the approximate location of Magnetic North?
3. Stand and face north on the Longitude Line in the soccer field.
4. Align North with your position within any two cones. Stay at least 6 feet away from any other students.
5. Rotate the compass so that north aligns with the compass needle.
6. What is the magnetic deviation between True North and Magnetic North on your compass?


## Aviation Plotter



Using a Plotter

1. What are the three main uses of a Plotter?
2. How long is a Statute Mile?
3. How long is a Nautical Mile?

## Plotting your course from Norwood Municipal Airport to Turner's Falls Airport

1. Using your plotter as a straight edge, draw a line with a pencil from Norwood to Turner's Falls.
2. Align the small circle in the middle of the plotter to the nearest line of longitude.
3. Record the westerly course. The number must be between 181 and 359 .
4. Find the Magnetic Variation by reading it on the nearest Isogonic line. It will be a dashed line at an angle to the line of longitude. There are four of these on your chart. Which of the four will you use? Hint - it will be a number followed by the degrees symbol $\left({ }^{\circ}\right)$.
5. Now let's do some calculations:

True Course $\qquad$
Magnetic Variation $\qquad$
Magnetic Course $\qquad$
6. Choose two different airports and plot your course.

Departure Airport $\qquad$ Destination Airport $\qquad$

True Course $\qquad$
Magnetic Variation $\qquad$
Magnetic Course $\qquad$

Departure Airport $\qquad$ Destination Airport $\qquad$

True Course $\qquad$
Magnetic Variation $\qquad$
Magnetic Course $\qquad$

## Charting your Course

## Aircraft - Choose one by circling:

Piper Warrior Cessna $152 \quad$ Beech Bonanza Aeronca Champ Cirus SR20 Mooney M20

## Call Sign - N

(choose any combination of letters and numbers. The letters and numbers must be appropriate).

## Instructor Approval

1. Find the True Airspeed (TAS) and gallons per hour in cruise flight (GPH) for your aircraft using Internet research
a. TAS $\qquad$
b. GPH $\qquad$
2. On your New York Sectional chart, choose an airport for your departure.
3. Select a destination airport of at least 100 nautical miles straight line distance from your departure.
4. Choose an altitude between 3500 and 8500 feet.
a. Traveling east - use odd thousands plus 500 feet (e.g. 5,500 feet)
b. Traveling west - use even thousands plus 500 feet (e.g. 4,500 feet)
5. Determine the following numbers and input them onto your Flight Plan
a) Winds are "Calm" - zero for this activity
b) True Course - use your Plotter
c) Wind Correction - zero for this activity
d) True Heading - same as True Course for this activity
e) Magnetic Variation - Find the Isogonic line closest to your course
f) Magnetic Heading
g) Ground Speed - same as TAS for this activity
h) Total Miles
i) Total Time
j) Fuel Required
k) Leave the "Remarks" section blank.
6. Choose five visible check points along your route of flight
7. Use the current clock time for Departure Time.
8. Under Wind Speed and Direction, write "Calm". This will result in a zero wind correction angle. This means that for this activity, True Airspeed and Ground speed will be the same
9. Determine "Total Time" by using this formula: Miles Flown/Ground Speed X $\mathbf{6 0}=$ Total Time in minutes

Example:
Miles Flown-135
Ground Speed - 295
135/295 X $60=27.45$ minutes, approximately 27 minutes and 26 seconds
10. Determine Fuel Required using this formula: Total Time/60 X GPH = Fuel Required Example:

Total Time $=27.45$ minutes
Gallons Per Hour (GPH) $=42$ (Where did we get that?)
$27.45 / 60 \times 42=19.215$ Gallons of fuel
11. Determine the point-to-point distances between check points.
12. Determine the Distance Remaining. How will you do this?

## BONUS!!

Figure out the Estimated Elapsed Time and the Estimated Arrival Time on your flight plan.

Why do you think CLOSE YOUR FLIGHT PLAN is printed at the bottom of the Flight Plan?

## VFR Flight Plan

| ALTITUDE |  |  |  |  | HEADING |  |  |  |  | GPH |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| True <br> Air <br> Speed | Winds <br> Direction <br> Speed | True Course | Wind Correction | True Heading | Variation <br> +W -E | Magnetic Heading | Ground Speed | Total Miles | Total <br> Time | Fuel Required |
|  |  |  |  |  |  |  |  |  |  |  |


| Time Off | Distance |  | Elapsed Time |  | Arrival Time |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Check Points | Point <br> to <br> Point | Dist. <br> Remain | Estimated | Actual | Estimated | Actual |  |
| 1 |  |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |  |
| 3 |  |  |  |  |  |  |  |
| 4 |  |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  |  |

## CLOSE YOUR FLIGHT PLAN!!

